

A Role of ECDD in Leading Natural Products for Drug Discovery and Development in Thailand

Suparerk Borwornpinyo, Founder and Director Excellent Center for Drug Discovery (ECDD), Mahidol University

13th April 2021

Approximately more than 60% of drugs available on the market today are derived from chemical structures found in nature.

NPDD Ecosystem in Asia: An Open Innovation Platform

APAC DA-EWG: Pillar 5 Drug Discovery using Natural Product

Preparation for Pilot Project

Internship for technology transfer (Bilateral communication)

- 4 month (February-May, 2019) internship at Takeda Shonan Research Center (tech-transfer & capacity building)
- Mr. Phongthon Kanjanasirirat (ECDD, Mahidol University)

Overall scheme of the NPDD initiative with Thai institutions Capacity building through phenotypic screening

iPark/Japan

iPSC-derived MN cell death assay project

Motor neuron (MN) deficiency

ote: SMI-32 = Neurofilament H Hoechst = Nucleus Scale bar = 25 um

ECDD High-Throughput and High-Content Screening Platform

established in 2016: TCELS-Mahidol University (SC and MD Ramathibodi Hospital)

Motor neuron cell death assay

Methodology

- Cell numbers: 7,500 cells/well
- Concentration of compounds for screening:
 - Crude extract = 10 µg/ml
 - Purified compound = $10 \mu M$
 - Synthesis compound = 10 µM

Motor neuron cell death assay

The Results of an anti-MN cell death screening

- Positive control
- Negative control
- Compounds
- Ferrostatin-1

Reproducibility analysis

Z-factor = 0.688

iPSC-derived MN cell death assay project

Screening Process

Flow of collaboration, decision, plans and actions

First priority selection (IC50 < 0.1 for cellular MOA assay)

	No.	Compounds	IC50 MN	IC50 MOA assay	
	1	ECDD-DPM-N924	6.77	non-effective	
	2	ECDD-DPM-N937	3.06	non-effective	
	3	ECDD-DPM-S186	3.06	6.56	
	4	ECDD-DPM-S189	5.95	4.87	
	5	ECDD-DPM-S192	non-effective	16.97	
	6	ECDD-DPM-S195	1.2	4.45	
	7	ECDD-DPM-S230	3.32	non-effective	
	8	ECDD-DPM-E971	non-effective	non-effective	
	9	ECDD-DPM-E1095	5.69	non-effective	
	10	ECDD-DPM-E1168	1.85	non-effective	
	11	ECDD-DPM-E1171	0.05	non-effective	☆
	12	ECDD-DPM-E1183	1.46	9.26	
	13	ECDD-DPM-E1204	0.38	non-effective	
	14	ECDD-DPM-E1211	3.53	non-effective	
	15	ECDD-DPM-E1215	9.52	non-effective	
	16	ECDD-DPM-S685	non-effective	7.57	
	17	ECDD-DPM-S777	3.13	non-effective	
_	18	ECDD-DPM-S443	0.08	3.25	
	19	ECDD-DPM-S461	0.63	non-effective	
	20	ECDD-DPM-S465	0.33	non-effective	

No.	Compounds	IC50 MN	IC50 MOA assay
21	ECDD-DPM-N131	non-effective	non-effective
22	ECDD-DPM-N190	0.2	1.47
23	ECDD-DPM-N197	3.54	6.11
24	ECDD-DPM-N664	3.54	non-effective
25	ECDD-DPM-N745	0.12	non-effective
26	ECDD-DPM-E278	0.07	0.52
27	ECDD-DPM-E326	0.24	non-effective
28	ECDD-DPM-E329	0.06	non-effective
29	ECDD-DPM-E651	5.15	non-effective
30	ECDD-DPM-E691	10.44	non-effective
31	ECDD-DPM-E707	0.66	non-effective
32	ECDD-DPM-E760	non-effective	non-effective
33	ECDD-DPM-E824	2.91	4.44
34	ECDD-DPM-E825	5.05	non-effective
35	ECDD-DPM-E829	non-effective	non-effective
36	ECDD-DPM-E831	2.86	non-effective
37	ECDD-DPM-E865	non-effective	non-effective
38	ECDD-DPM-E868	7.31	non-effective
39	ECDD-DPM-E869	3.64	non-effective
40	ECDD-DPM-E873	3.51	non-effective

Prof. Wanchai De-Eknamkul

Dr. Lily Eurwilaichitr

Assoc. Prof. Dr. Surat Laphookhieo

A STORE TO A STORE OF A STORE OF

Prof. Patoomratana Tuchinda

Flow of collaboration, decision, plans and actions

Flow-chart for Initiation of target deconvolution

Dr. Sitthivut Charoensutthivarakul School of Bioinnovation, Mahidol University

Thermal shift assay

Plan the experiment for target deconvolution

15

A **thermal shift assay** (**TSA**) measures changes in the thermal denaturation temperature. Upon heating a protein will encounter a temperature at which it denatures, referred to as the melting point. This melting temperature is a physical property and a constant for any given set of conditions. Compounds that interact with a protein will change the melting temperature (thermal shift).

Plan the experiment for target deconvolution

PROFILE

• Experimental workflow

The **CE**llular Thermal **S**hift **A**ssay is a method that allows the quantification of a compound's target engagement within living cells or in disrupted cells.

The CETSA principle is based on the change in thermal denaturation profile of the target protein that occurs following the binding of a compound. However, in contrast to traditional Therma Shift Assay, that are carried out in highly purified and isolated systems monitoring a single protein species, CETSA can be performed in complex protein samples and in live cells.

The CETSA is performed by incubating the cells with the test compound, followed by heating of the compound-treated cells, and then by measuring the remaining soluble target protein.

There are three main formats in the CETSA technology platform. Two of the formats, CETSA Classics and CETSA High Throughput (HT) are both targeted CETSA methods for confirming target engagement of a single known protein target using antibodies for the quantification. The third format, CETSA MS, is proteome-wide measurement of cellular target engagement using mass spectrometry.

Plan the experiment for target deconvolution

• CETSA-MS

MS-based CETSA[®] for target deconvolution in phenotypic drug discovery

The antibody-based readout enables CETSA to measure the stability shifts of different target proteins in a protein mixture, while this method requires prior knowledge of interested targets. Thus, it is not suitable for unbiased drug target discovery and also cannot be conducted at proteome scale.

To solve these problems, The Cellular thermal shift assay followed by MS (CETSA-MS) allows for an unbiased search of drug targets and can be applied in living cells without requiring compound labeling.

To date CETSA-MS has been used in several studies for target deconvolution, which have both confirmed previously known compound – target interactions and discovered new ones.

https://www.sciencedirect.com/science/article/pii/S0968089619309174

Flow of collaboration, decision, plans and actions

NPDD Ecosystem in Asia: An Open Innovation Platform

